We obtained no nmr evidence for the analogous reaction with FSSF, although any higher fluorosulfanes that could have been formed may have decomposed instantaneously on contact with the glass apparatus. However, it is possible that the higher sulfanes constituting our reaction products were formed by the intermediate synthesis of fluorosulfanes, for example

$$2FSSF + H_2S \longrightarrow S_5F_2 + 2HF \tag{8}$$

$$S_5F_2 + 2H_2S \longrightarrow H_2S_7 + 2HF$$
 (9)

Without a metal vacuum system we were unable to pursue this hypothesis. Similarly, while the mixture of FSSF, SSF₂, and SF₄ could be prepared in glass with no side formation of SOF₂ or SiF₄, attempts to isomerize the FSSF to the more stable¹⁴ SSF₂ isomer were accompanied by considerable SOF₂ formation together with the production of some SiF₄.

(14) F. Seel and R. Budenz, Chimia, 17, 355 (1963).

Since Moissan and Lebeau¹⁵ had described the reaction of SOF₂ with H_2S upon heating, we treated SOF₂ with an equimolar amount of H_2S at room temperature to determine whether the presence of SOF₂ would interfere with the reactions of sulfur fluorides with H_2S . After 16 hr at room temperature, there had been no detectable reaction between SOF₂ and H_2S . From this we conclude that SOF₂ impurities do not participate in the reaction of SF₄ with H_2S . We further verified this by adding SOF₂ to the SF₄ before reaction with H_2S .

Our work indicates that fluorosulfanes, S_nF_2 with n > 3, react very quickly with H_2S . We were unable to observe these species *via* fluorine nmr spectroscopy, in analogy to Seel.¹⁴

Acknowledgment.—This work was supported by the National Science Foundation (GP-9234). The authors thank Mr. B. J. Nist for recording the ¹⁹F nmr spectra. (15) H. Moissan and P. Lebeau, Ann. Chim. Phys., [7] 26, 145 (1902).

> Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho 83843

Chlorine Monofluoride Addition to Halo Imines. Magnetic Nonequivalence in Some Perfluoro Amines

BY RICHARD F. SWINDELL, L. M. ZABOROWSKI, AND JEAN'NE M. SHREEVE*1

Received December 29, 1970

Chlorine monofluoride adds to $(CF_3)_2C$ —NCl, Cl_2C —NF, $((CF_3)_2C$ —NF, $(CF_3)_2C$ —NF, and ClFC—NF to give $(CF_3)_2FCNCl_2$, $Cl_2FCNFCl$, $(CF_3)_2CFN$ —NCCl $(CF_3)_2$ and $((CF_3)_2CFN)_2$, F_3CNFCl , $(CF_3)_2FCNFCl$, and ClF_2CNFCl . The measurably slow nitrogen inversion process in the last two compounds is detected by ¹⁹F nmr spectra which show magnetic nonequivalence of fluorines resulting from an asymmetric nitrogen. ClF_2CNFCl gives spectra characteristic of slow inversion at temperatures in excess of 100°. Mercury easily dechlorinates $Cl_nF_{3-n}CNF_{2-x}Cl_x$ (n = 1-3, x = 1, 2) to corresponding imines.

Chlorine monofluoride is a useful reagent, acting as a fluorinating or chlorinating agent as well as a chlorofluorinating agent.^{2,3} Recent papers describe the addition of CIF to carbon-nitrogen multiple bonds giving > NCl⁴ or - NCl₂⁵ derivatives. We have found that CIF adds readily to >C=NF imines when the carbon substituents are chlorine or fluorine. In some cases, where CF_3 is bonded to the imine carbon, cesium fluoride is required to catalyze the reaction. Each product which contains chlorine bonded to carbon will rapidly lose chlorine at room temperature in the presence of mercury to give >C==NF imine. Two of the new compounds, ClF₂CNFCl and (CF₃)₂FCNFCl, contain an asymmetric center. At 25° the carbon fluorines of ClF₂CNFCl are magnetically nonequivalent as are the CF₃ groups in $(CF_3)_2$ CFNFCl as detected with ¹⁹F nmr.6 An nmr-temperature study shows hindered (1) Alfred P. Sloan Foundation Fellow.

inversion about the nitrogen which can be overcome thermally in the case of $(CF_3)_2CFNFC1$ at 60° but is still observed for $C1F_2CNFC1$ at greater than 100° . Most acyclic amines known to invert slowly have a temperature of coalescence below 25° , although there are exceptions.^{7,8}

Dechlorofluorination of halodifluoraminomethanes with mercury provides a straighforward route to the formation of fluoro imines. Thus, with NF₂CCl₂CN,⁹ the syn and anti isomers (FN=CClCN) are obtained, as are the imines *syn-* and *anti*-FN=CClF¹⁰ and -FN= CCl₂ from NF₂CCl₂F and NF₂CCl₃. Mercury does not react similarly with NF₂CClF₂ apparently because of the stronger carbon-chlorine bond due to the electronwithdrawing properties of the fluorine atoms bonded to carbon. Fluoroimines have been prepared previously from the fluorination of organic nitrogen compounds, the reductive defluorination of >CFNF₂ compounds,^{11,12} and the dehydrofluorination of >CHNF₂ compounds.¹¹

⁽²⁾ D. E. Gould, L. R. Anderson, D. E. Young, and W. B. Fox, J. Amer. Chem. Soc., 92, 2313 (1969), and references therein.

 $^{(3)\,}$ C. J. Schack and R. D. Wilson, Inorg. Chem., 9, 311 (1970), and references therein.

⁽⁴⁾ O. D. Moldavskii and V. G. Temchenko, Zh. Obshch. Khim., **39**, 1393 (1969).

⁽⁵⁾ D. E. Young, L. R. Anderson, and W. B. Fox, *Chem. Commun.*, 395 (1970); J. B. Hynes and T. E. Austin, *Inorg. Chem.*, **5**, 488 (1966).

⁽⁶⁾ D. L. Griffith and J. D. Roberts, J. Amer. Chem. Soc., 87, 4089 (1965).

⁽⁷⁾ D. Felix and A. Eschenmoser, Angew. Chem., Int. Ed. Engl., 7, 224 (1968).

⁽⁸⁾ M. G. Barlow and K. W. Cheung, Chem. Commun., 870 (1969).

⁽⁹⁾ L. M. Zaborowski and J. M. Shreeve, Inorg. Chem., 10, 407 (1971).

⁽¹⁰⁾ D. H. Dybvig, *ibid.*, **5**, 1795 (1966).

⁽¹¹⁾ J. K. Ruff, Chem. Rev., 67, 665 (1967).
(12) R. E. Banks and G. E. Williamson, J. Chem. Soc., 815 (1965).

However, when compounds of the form Cl_nF_{3-n} - $CNF_{2-x}Cl_x$ (n = 1-3, x = 1, 2) react with mercury, only dechlorination occurs.

Experimental Section

Materials.—The infines FN=CCl₂ and FN=CFCl were prepared by the reaction of NF₂CCl₃⁹ and NF₂CCl₂F^{9,13} respectively, with mercury. $(CF_3)_2C$ =NF and $((CF_3)_2C$ =N)₂ were prepared by the method of Ruff,^{14,15} and $(CF_3)_2C$ =NCl was obtained by treating $(CF_3)_2C$ =NH with ClF over CsF. Chlorine monofluoride (Ozark-Mahoning Co.) was used without further purification.

General Procedures.—Gases and volatile liquids were handled in a conventional Pyrex vacuum apparatus equipped with a Wallace and Tiernan or Heise Bourdon tube type pressure gauge. Gaseous starting materials and purified products were measured quantitatively by PVT techniques. For gas chromatographic separations, the columns were constructed of 0.25-in. aluminum or copper tubing packed with 20% Kel-F polymer oil, 20% FC-43 (3M Co.), or FS-1265 (Analabs) on acid-washed Chromosorb P. In some cases, fractional condensation was used to effect crude separation. Molecular weight measurements were carried out by vapor density techniques with a Pyrex weighing vessel. Vapor pressure studies were made by using the method of Kellogg and Cady.¹⁶

Infrared spectra were recorded with a Perkin-Elmer 457 spectrophotometer using a 5-cm gas cell equipped with KBr windows. Fluorine-19 nmr spectra were obtained on a Varian HA-100 spectrometer using trichlorofluoromethane as an internal standard. Mass spectra were obtained with a Perkin-Elmer Hitachi RMU-6E mass spectrometer at an ionization potential of 70 eV.

Reaction of NF₂CCl₃ with Mercury.—NF₂CCl₃⁹ (13 mmol) and excess mercury were stirred at room temperature for 31 hr. The volatile product was essentially pure FN=CCl₂ which was identified by its mass spectrum;¹⁷ mol wt 116.5 (calcd 115.9); ¹⁹F nmr: single broad peak at ϕ - 57.3; and infrared spectrum¹⁷ at 10 mm: 1560 (m, doublet), 1020 (s), 940 (s, triplet), 798 (vw), 650 cm⁻¹ (m).

Reaction of NF₂CF₂Cl with Mercury.—NF₂CF₂Cl⁹ (1 mmol) and excess mercury were stirred at 140° in a 125-cm³ glass vessel for 42 hr. The volatile products consisted of CF₄, SiF₄, N₂, and unreacted NF₂CF₂Cl.

Preparation of $(CF_3)_2C$ =NCl.-- $(CF_3)_2C$ =NH (5 mmol) and ClF (8 mmol) were condensed into a 75-ml Hoke bomb containing 10 g of CsF and held at -78° for 0.5 hr. $(CF_3)_2C$ =NCl (57%) was obtained after fractionation at -98° . The $(CF_3)_2CFNCl_2$ (37%) was stopped at -63° .

Preparation and Properties of Cl₂FCNFCl.—ClF (2.2 mmol) and FN==CCl₂ (1.8 mmol) were condensed into a 50-ml Pyrex vessel fitted with a Teflon stopcock (Fischer-Porter Co.) and allowed to react for 3 hr at -20° . Pure Cl₂FCNFCl was obtained in 60% yield after separation from the other volatile products *via* gas chromatography with a 25-ft FC-43 column at 0°.

Chlorofluoro(dichlorofluoromethyl)amine is a colorless liquid at 25° which slowly decomposes at 53° to Cl₂, FN=CFCl, and trace amounts of FN=CF₂. Reaction with mercury is rapid to give FN=CFCl as the only volatile product. Because of its thermal instability, vapor pressure data for pure Cl₂FCNFCl were obtained only up to 368 Torr at 46.2°. Between 273 and 319.2°K, vapor pressure may be calculated from the equation log $P_{\text{Torr}} = 7.12 - 1454/T$. Vapor pressure data are as follows (T, °K; P, Torr): 273, 59.7; 287.8, 116.6; 295.5, 158.5; 312.0, 283.1; 319.2, 367.5. The experimental molecular weight was found to be 171.4 (calcd 170.4). Two resonances were observed in the ¹⁹F mmr, a doublet (relative areas of 1:1) at ϕ 46.0 assigned to the CF fluorine and a broad overlapping doublet centered at ϕ -22.1 assigned to the NF fluorine. The ratio of the relative areas of the NF and CF resonances is 1.0:1.1 and $J_{F-F} = 28$ cps. The infrared spectrum (12 Torr) is as follows: 1135 (vs), 1007 (m), 927 (s), 906 (s), 880 (s), 785 (m), 756 (w),

(15) J. L. Gerlock, E. G. Janzen, and J. K. Ruff, J. Amer. Chem. Soc., 92, 2558 (1970).

(16) K. B. Kellogg and G. H. Cady, ibid., 70, 3986 (1948)

(17) V. A. Ginsburg and K. N. Smirnov, Zh. Obshch. Khim., 39, 1331 (1960).

719 (m), 688 (vw), 600 cm⁻¹ (w). The principal peaks in the mass spectrum correspond to the ions CN⁺, CF⁺, NF⁻, Cl⁺, HCl⁺, NCF⁺, CCl⁺, NCl⁺, NCCl⁺, FNCF⁺, CFCl⁺, NFCl⁺, NCFCl⁺, CF2Cl⁺, FNCFCl⁺ (100%), CFCl₂⁺, FNCCl₂⁺, CCl₃⁺, and FNCCl₂F⁺. All chlorine-containing fragments give the correct isotopic ratios. *Anal.* Calcd for Cl₂FCNFCl: C, 7.0; N, 8.2; F, 22.3; Cl, 62.4. Found: C, 6.68; N, 7.67; F, 21.1; Cl, 62.4.

Preparation and Properties of ClF₂CNFC1.—ClF (2.6 mmol) and FN=CFCl (2.2 mmol) were condensed into a 50-ml bulb and allowed to react for 3 hr at -20° . Pure ClF₂CNFCl was obtained in 67% yield after separation from the other volatile products (including FN=CCl₂) via gas chromatograph with a 25ft Kel-F column.

Chlorofluoro(chlorodifluoromethyl)amine is a colorless gas at 25° which slowly decomposes to Cl₂ and FN==CF₂ but reacts rapidly with mercury giving the imine as the only volatile product. The boiling point is 16.5° from a Clausius–Clapeyron plot described by the equation log $P_{\text{Torr}} = 7.64 - 1378/T^{\circ}$ K. Vapor pressure data are as follows (T, °K; P, Torr): 2260, 37.1; 250.5, 142.6; 264.2, 268.7; 273.0, 393.4; 280.0, 525.5; 283.0, 595.2; 286.5, 673.8; 289.0, 737.2; 291.0, 794.7. The molar heat of vaporization is 6.3 kcal and the Trouton constant is 21.8. The experimental molecular weight is 153.3 (calcd 153.9). See Results and Discussion for details on ¹⁹F nmr. The infrared spectrum (13 Torr) is as follows: 1220 (vs), 1210 (vs), 1162 (vs), 1107 (vw), 1060 (vs), 923 (s), 884 (m), 853 (m), 816 (s), 788 (m), 706 (m), 662 (m), 600 cm⁻¹ (m). The principal peaks in the mass spectrum correspond to the ions CF⁺, NF⁺, Cl⁺, HCl⁺, NCF⁺, NCF⁺, NCF⁺, NCF⁺, ClCl⁺, NNCF², CICF² (100%), FNCFCl⁺, and FNCF₂Cl⁺. Anal. Calcd for ClF₂CNFCl: Cl, 46.2. Found: Cl, 46.1.

Preparation of CF₃**NFC1**.—ClF (0.7 mmol) and FN=CF₂ (0.5 mmol) were condensed into a 10-ml bulb and allowed to react for 4 hr at -20° . CF₃NFCl was obtained in about 75% yield and was identified by its infrared and ¹⁹F nmr spectra.¹⁸

Preparation and Properties of $(CF_3)_2 CFNCl_2$.—ClF (10 mmol) and $(CF_3)_2 C$ =NCl (6.7 mmol) were condensed into a 75-ml Monel vessel containing roughly 10 g of finely powdered anhydrous CsF and several steel balls. The vessel was held at -78° for 1 hr followed by shaking for 17 hr at 25°. Pure $(CF_3)_2$ -CFNCl₂ was obtained in 80% yield by gas chromatography with a 6-ft FS-1265 column. No reaction occurs without CsF at either 27 or 80°. (See preparation of *N*-chlorohexafluoroisopropylimine.)

Dichloro(heptafluoroisopropyl)amine is a stable yellow liquid at 25°. The boiling point is 70.5° from the equation $\log P_{\text{Torr}} =$ 7.73 - $1667/T^{\circ}K$. Vapor pressure data are as follows (T, °K; P, Torr): 299.0, 133; 304.3, 175; 307.5, 213; 312.3, 247; 316.8, 295; 321.5, 349; 326.0, 405; 329.5, 466; 330.8, 491; 332.5, 517; 334.8, 557; 336.3, 599; 337.3, 620; 340.0, 680; 341.8, 711; 343.8, 762. The molar heat of vaporization is 7.7 kcal and the Trouton constant is 22.4. The experimental molecular weight is 253.9 (calcd 254). Two resonances were observed in the $^{19}\mathrm{F}$ nmr, a doublet (relative areas 1:1) at ϕ 72.2 assigned to the equivalent CF3 groups and a broad, partially resolved multiplet centered at ϕ 139.8 assigned to the CF fluorine. The relative areas of the CF_3 and CF resonances were found to be 5.9:1.0 ($J_{CF_{3}-F} = 3$ cps). The infrared spectrum (8 Torr) is as follows: 1305 (s), 1288 (s), 1260 (vs), 1212 (w), 1190 (w), 1165 (m), 1128 (w), 1082 (s), 995 (s), 810 (w), 728 (m), 545 (w), 480 cm⁻¹ (w). The principal peaks in the mass spectrum correspond to the ions CN^+ , Cl^+ , HCl^- , CF_2^+ , CF_3^+ (100%), CF_2CN^+ , spond to the ions CN⁺, Cl⁺, HCl⁺, CF₃⁺, CF₃⁺ (100%), CF₂CN⁺, CF₂Cl⁺, CF₃CN⁺, CF₃CF⁺, CF₃CCN⁺, CF₃CRCl⁺, CF₃CRCl⁺, CF₃CRCl⁺, (CF₃)₂CN⁺, (CF₃)₂CF⁺, C₃F₃NCl⁺, C₃F₄NCl₂⁺, (CF₃)₂CRCl⁺, and (CF₃)₂CFNCl₂⁺. Anal. Calcd for (CF₃)₂-CFNCl₂: C, 14.18; N, 5.51; F, 52.4; Cl, 27.65. Found: C, 14.31; N, 5.40; F, 52.4; Cl, 26.98.

Preparation and Properties of $(CF_3)_2$ CFNFCl.—ClF (6.4 mmol) and $(CF_3)_2$ C=NF (3.8 mmol) were condensed into a 75-ml Monel vessel containing approximately 10 g of finely divided anhydrous CsF and several steel balls. The vessel was warmed to and held at -78° for 1 hr followed by shaking for 13 hr at 25°. Pure $(CF_3)_2$ CFNFCl was obtained in 71% yield by gas chromatography with a 24-ft Kel-F column. No reaction occurs without CsF.

Chlorofluoro(heptafluoroisopropyl)amine is a stable colorless

⁽¹³⁾ L. M. Zaborowski and J. M. Shreeve, J. Amer. Chem. Soc., 92, 3665 (1970).

⁽¹⁴⁾ J. K. Ruff, J. Org. Chem., 32, 1675 (1967).

⁽¹⁸⁾ J. B. Hynes, B. C. Bishop, and L. A. Bigelow, *Inorg. Chem.*, 6, 417 (1967).

liquid at room temperature. Vapor pressure data are as follows (*T*, °K; *P*, Torr): 240, 26; 251, 51; 263.3, 99.5; 273.3, 166; 282, 245; 291, 347; 298, 457; 303, 561; 305, 601; 308, 669; 311.3, 767. The equation log $P_{\text{Torr}} = 7.71 - 1503/T^{\circ}$ K gives a boiling point of 38.1°. The molar heat of vaporization is 7.05 kcal and the Trouton constant is 22.7. The experimental molecular weight is 238.8 (calcd 237.5). See Results and Discussion for details on the ¹⁹F nmr. The infrared spectrum (10 Torr) is as follows: 1305 (s), 1288 (s), 1260 (vs), 1187 (m), 1157 (m), 1080 (m), 1010 (m), 915 (w, sh), 892 (m), 800 (w), 749 (m), 724 (m), 582 cm⁻¹ (w). The principal peaks in the mass spectrum correspond to the ions CN⁺, Cl⁺, HCl⁺, CF₃CFN⁺, CF₃C+, CF₃CNCl⁺, CF₃CFNCl⁺, CF₃CFNFCl⁺, (CF₃)₂CNCl⁺, CF₃CFNCl⁺, CF₃CFNFCl⁺, (CF₃)₂CNCl⁺, CF₃)₂CNCl⁺, CF₃CFNCl⁺, CF₃)₂CFNFCl⁺. Anal. Calcd for (CF₃)₂CFNFCl⁻: Cl, 15.0. Found: Cl, 15.1.

Preparation and Properties of $(CF_3)_2CFN$ —NCCl $(CF_3)_2$ and $((CF_3)_2CFN)_2$.—ClF (5 mmol) and $((CF_3)_2C=N)_2^{15}$ (2.5 mmol) were condensed into a Pyrex vessel and held at 25° for 25 min. Excess ClF was removed by pumping on the contents of the vessel at -78° and the reaction products were separated by gas chromatography using a 1.5-ft column packed with 20% Kel-F on Chromosorb P. Pure $(CF_3)_2CFN$ —NCCl $(CF_3)_2$ is obtained in 54% yield.

N-(Heptafluoroisopropyl)-*N'*-(2-chlorohexafluoroisopropyl)diazine is a stable light yellow liquid at 25°. Vapor pressure data are as follows (*T*, °K; *P*, Torr): 294.7, 70; 311.7, 150; 335.2, 362; 347.2, 552; 352, 650; 355, 712. An extrapolated boiling point of 83.4° is obtained from the equation log *P*_{Torr} = 7.78 − 1750/*T*°K. The molar heat of vaporization is 8.1 kcal and the Trouton constant is 22.7. Three resonances are found in the ¹⁹F nmr: a singlet at ϕ 76.8 (*J*_{CF3}-CF = 4.9 cps) assigned to the remaining CF₃ groups, and a septet at ϕ 163.3 (*J*_{CF-CF3} = 4.9 cps) assigned to CF. Peak areas were in the ratio 6:6:1. The infrared spectrum (7 Torr) is as follows: 1387 (w), 1338 (m), 1290 (s), 1268 (s), 1258 (s), 1215 (w), 1200 (m), 1180 (m), 1080 (m), 1015 (s), 845 (w), 770 (w), 740 (m), 630 (w), 540 (w), 480 cm⁻¹ (w). The principal peaks in the mass spectrum correspond to the ions CF₂⁺, CF₃⁺ (100%), CF₂Cl⁺, C₂F₄⁺, C₃F₆N₂⁺, C₃F₇⁺, C₃F₆Cl⁺, and C₆F₁₃N₂⁺. *Anal.* Calcd for (CF₃)₂CFN=NCCl(CF₃)₂: F, 64.55; C, 18.82; N, 7.32; Cl, 9.31. Found: F, 64.4; C, 18.55; N, 7.32; Cl, 8.62.

When the reactants are held in the presence of an excess of anhydrous CsF (5 g), both chlorofluorination and fluorination occur. For example, ClF (5 mmol) and $((CF_3)_2C=N)_2$ (2.5 mmol) on CsF (5 g) at 25° for approximately 2 hr followed by gas chromatographic separation give $(CF_3)_2CCINNCF(CF_3)_2$ (45%) and $((CF_3)_2CFN)_2$ (27%). None of the latter is formed without CsF.

Bis(heptafluoroisopropyl)diazine which was reported previously¹⁶ is identified by mass, nmr, and infrared spectra and fluorine analysis. The ¹⁹F nmr is a complex multiplet centered at ϕ 161.5 which is assigned to the two CF fluorines which are split by the adjacent trifluoromethyl groups. A doublet at ϕ 76.6 ($J_{CF3-F} = 5$ cps) is assigned to the CF₃ groups. The relative areas of the resonances are 1:6. Principal peaks in the mass spectrum correspond to the ions CF₂+, CF₃+ (100%), CF₃N₂+, C₂F₄+, C₂F₅+, C₃F₅+, C₃F₇+, C₃F₆N₂+, (M - 2F)+, and (M - F)+. The infrared spectrum (8 Torr) is as follows: 1420 (w), 1380 (w), 1310 (vs), 1295 (vs), 1260 (vs), 1200 (s), 1170 (s), 1090 (s), 1020 (s), 770 (w), 740 cm⁻¹ (s). Anal. Calcd for ((CF₃)₂FCN)₂: F, 72.7. Found: F, 73.0.

Results and Discussion

Chlorine monofluoride readily adds across the double bond in $(CF_3)_2C$ —NF and $(CF_3)_2C$ —NCl, in the presence of cesium fluoride, to give $(CF_3)_2FCNFCl$ and $(CF_3)_2CFNCl_2$ in yields greater than 70%. Although the latter reactions do not occur in the absence of CsF, CIF does add to Cl_2C —NF, CIFC—NF, F_2C —NF, and $((CF_3)_2C$ —N)₂ without the metal fluoride. In the presence of anhydrous CsF, $((CF_3)_2C$ —N)₂ reacts with an excess or deficit of CIF to give both the chlorofluorinated (I) and difluorinated (II) products. The relative amounts of the two products formed are unpredictable and cannot be correlated with any single factor,

such as temperature, reaction time, or physical state of CsF. Both must be formed from reaction between the original reactants, for, once formed, neither product will react further with CIF either with or without CsF. No reaction occurs when the dimer is added to preformed $Cs^+ClF_2^-(CsF + ClF)$ at -20° ; when warmed to 25° where the CIF equilibrium vapor pressure is negligible, reaction occurs but only trivial amounts of II are formed. On the other hand, when ClF is present neat, II does not form at all. While the addition of the components of CIF to the dimer apparently proceeds via a straightforward nucleophilic attack on the positive carbon by fluorine of the polar CIF molecule to form a carbanion which undergoes further reaction with the chloronium ion, formation of II must occur via a more complex mechanism not obvious from the results.

FCl₂CNFCl and F₂ClCNFCl are thermally unstable and lose chlorine to give FClC=NF and F₂C=NF. Thus, starting with Cl_2C =NF a series of imines and substituted perhalomethylchlorofluoramines results.

$$Cl_{2}C = NF + ClF \longrightarrow Cl_{2}FCNFCl \xrightarrow{\Delta \text{ or}} ClFC = NF + HgCl_{2}$$
$$ClFC = NF + ClF \longrightarrow ClF_{2}CNFCl \xrightarrow{\Delta \text{ or}} F_{2}C = NF + HgCl_{2}$$
$$F_{2}C = NF + ClF \longrightarrow F_{3}CNFCl \xrightarrow{\Delta \text{ or}} Hg \text{ no reaction}$$

The ¹⁹F nmr spectrum of (CF₃)₂FCNFCl is reasonably well resolved at -40° . The CF₃ region consists of two multiplets of equal area. The multiplets are assigned to two magnetically nonequivalent CF₃ groups, $CF_{3^{a}}$ and $CF_{3^{b}}$. The nonequivalence is attributed to slow inversion about the asymmetric nitrogen.⁶ At -40° the center of the CF₃^a multiplet is at ϕ 72.4 and consists first of two separate quartets arising from interaction with the NF fluorine $(J_{CF_s^a-NF} = 24.1 \text{ cps})$ and CF_{3^b} ($J_{CF_3^a-CF_3^b} = 9.4$ cps). Each quartet is then split into two overlapping quartets from interaction with the CF fluorine $(J_{CF_8^a-CF} = 2.8 \text{ cps})$. The CF₃^b multiplet appears as a pentet of doublets centered at ϕ 74.2. Since the spin-spin couplings of both $CF_{3^{a}}$ $(J_{CF_{3^{a}}-CF_{3^{b}}})$ = 9.4 cps) and the NF fluorine $(J_{CF_s^n-NF} = 9.7 \text{ cps})$ with CF3^b are approximately the same value, the overall effect is a splitting of CF_{3}^{b} by four essentially equivalent fluorines to give the pentet which is then split by the CF fluorine $(J_{CF_s^{b}-CF} = 3.8 \text{ cps})$. The CF fluorine at ϕ 158.8 is a partially resolved multiplet which closely resembles a calculated 16-peak spectrum derived from the experimental coupling constants. The NF peak, found at $\phi - 1.5$, is broad and unresolved. No evidence for NF-CF spin-spin coupling is found although a weak interaction, *i.e.*, $J_{\rm NF-CF} < 2$ cps, could be masked by the broad CF and NF resonances. An integration of the total spectrum gives NF = 0.93, $CF_{3^{a}} = CF_{3^{b}} =$ 3.0, and CF = 0.93. A temperature study of the CF₃ resonances shows that as the sample is heated, the two nonequivalent CF3 groups become magnetically equivalent and the resonance bands coalesce at $T_c \approx 60^\circ$. The broadness of the resulting resonance arises from a secondary quadrupole broadening from the nitrogen.

The ¹⁹F nmr of CIF₂CNFCl is similar to that of $(CF_3)_2FCNFCl$ with the carbon fluorines CF^a and CF^b magnetically nonequivalent. At room temperature both CF^a and CF^b are well resolved and each is a doublet of doublets resulting from CF^a-CF^b ($J_{CF^a-CF^b} = 128$)

cps) and CF-NF ($J_{CF^{a}-NF} = 24$ cps, $J_{CF^{b}-NF} = 13$ cps) coupling. The rather large magnitude of $J_{CF^{a}-CF^{b}}$ is not without precedent, for values as high as 270 cps have been observed for nonequivalent carbon fluorines adjacent to an asymmetric carbon¹⁹ and, therefore, it is not unexpected in this case. In this ABX system the area ratio of the inner to outer doublets is 2.52:1 (theoretical 2.62:1).²⁰ Enhancement of the inner doublets is typical of spectra obtained when the chemical shift difference and spin-spin coupling values are similar; *i.e.*, for CIF₂CNFC1 $\Delta\phi_{CF^{a}-CF^{b}}$ (cps) Ξ 2. CF^a is centered at ϕ 55.6 and CF^b at ϕ 52.9 while the broad unresolved NF fluorine is found at ϕ -7.2. An integration of the total spectrum gives NF = 1.0 and CF^a = CF^b = 0.98.

An attempt to collapse the two CF multiplets proved unsuccessful. At -60° the centers of the two CF multiplets are separated by 330 cps but are shifted to about 237 cps at $+60^{\circ}$. At 100° the peaks still do not coalesce. Higher temperatures were not attempted due to excessive pressure from the ClF₂CNFCl-CCl₃F mixture in the nmr tube.

(19) L. Petrakis and C. H. Sederholm, J. Chem. Phys., 35, 1243 (1961).
(20) J. W. Emsley, J. Feeney, and L. H. Sucliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy," Vol. I, Pergamon Press, London, 1967, p 319.

An interesting aspect of the temperature study of the magnetically nonequivalent nuclei in $(CF_3)_2FCNFC1$ and ClF_2CNFC1 is the rather high temperature of coalescence, especially for the latter compound in which the CF resonances are separated by 237 cps at 60°. Other workers have found that when highly electronegative substituents, particularly halogens, are bonded to the asymmetric nitrogen, there is a significant rise in the temperature of coalescence.^{6,21,22} The collapse of the CF₃ groups in $(CF_3)_2FCNFC1$ at 60° can be rationalized in terms of the relatively bulky CF₃ groups which would increase the inversion rate because of greater steric interactions when the substituents are in a pyramidal position.²³

Acknowledgments.—Fluorine research at the University of Idaho is sponsored by the National Science Foundation and the Office of Naval Research. R. F. S. gratefully acknowledges the NDEA for a fellowship. The HA-100 nmr spectrometer was funded in part by grants from the National Science Foundation and the Max C. Fleischmann Foundation. We thank Mr. R. A. De Marco for mass spectra.

(21) S. J. Brois, J. Amer. Chem. Soc., 90, 506 (1968).

- (22) J. M. Lehn and J. Wagner, Chem. Commun., 148 (1968).
- (23) A. T. Bottini and J. D. Roberts, J. Amer. Chem. Soc., 80, 5203 (1958)

Contribution from the Department of Chemistry, Howard University, Washington, D. C. 20001, and the Institute for Materials Research, National Bureau of Standards, Washington, D. C. 20234

Solubility Study of Calcium Hydrogen Phosphate. Ion-Pair Formation^{1a}

BY HERSHEL MCDOWELL, WALTER E. BROWN,16 AND JOHN R. SUTTER*10

Received August 10, 1970

The solubility of CaHPO₄ has been determined in the ternary system Ca(OH)₂-H₃PO₄-H₂O, at 5, 15, 25, and 37°. The solubility product constant, $K_{sp} = (Ca^{2+})(HPO_4^{2-})$, varies with pH unless formation of ion pairs CaHPO₄° and CaH₂PO₄⁺ is taken into consideration. Solubility product constants and their standard errors for CaHPO₄ are (1.97 = 0.03) × 10⁻⁷, (1.64 ± 0.01) × 10⁻⁷, (1.26 ± 0.02) × 10⁻⁷, and (0.92 ± 0.02) × 10⁻⁷ at 5, 15, 25, and 37°, respectively. Association constants and standard errors are (2.4 ± 0.3) × 10², (1.9 ± 0.2) × 10², (3.8 ± 0.5) × 10³, and (3.9 ± 0.9) × 10² for CaHPO₄° and the association reactions for CaHPO₄° and CaH₂PO₄⁺ are also presented.

Introduction

Anhydrous calcium hydrogen phosphate, $CaHPO_4$, is a stable phase in the system $Ca(OH)_2$ -H₃PO₄-H₂O. Accurate information about the solubility of $CaHPO_4$ is of great value in establishing its stability range, in determining its thermodynamic properties, and in understanding interrelations among the calcium phosphates that precipitate from aqueous solutions.

Two values are given in the literature for the apparent solubility product of CaHPO₄ at 25° ,^{2,8} but these are not in good agreement. It is now known that the apparent solubility products for calcium phosphates vary with the equilibrium pH if they are calculated without taking into account ion-pair formation.⁴ The

neglect of ion-pair formation at relatively high concentrations accounts for much of the discrepancy in the reported values.

In this paper, we report the solubilities of CaHPO₄ at four temperatures in the dilute range of the phase diagram for this system. Three different experimental conditions were used to minimize effects due to meta-stability of CaHPO₄ with respect to other calcium phosphates and to ascertain that equilibrium was reached. Solubility products and standard heat and entropy of the dissolution reaction for CaHPO₄ and sassociation constants and standard heats and entropies of association for the ion pairs CaHPO₄⁰ and CaH₂PO₄⁺ are reported for 5, 15, 25, and 37°. Equilibrations were made in the ternary system to avoid complications in the interpretation of data which might result from the presence of other ions.

(4) E. C. Moreno, T. M. Gregory, and W. E. Brown, J. Res. Nat. Bur. Stand., Sect. A, **70**, 545 (1966).

 ⁽a) This paper is based on a dissertation submitted by Hershel Mc-Dowell to the faculty of Howard University in partial fulfillment of the requirement for the Ph.D. degree.
 (b) Director, Research Associate Program of the American Dental Association at the National Bureau of Standards.
 (c) To whom reprint requests should be made at Howard University.

⁽²⁾ T. D. Farr, Tenn. Val. Auth. Chem. Eng. Rep., No. 8 (1950).

⁽³⁾ K. L. Elmore and T. D. Farr, Ind. Eng. Chem., 32, 580 (1940).